13 research outputs found

    17-09 Assessing the Impact of Air Pollution on Public Health Along Transit Routes

    Get PDF
    Transportation sources account for a large proportion of the pollutants found in most urban areas. Also, transportation activity and intensity appear likely to contribute to the risk of respiratory disease occurrence. This research investigates the impacts of transportation, urban design and socioeconomic characteristics on the risk of air pollution-related respiratory diseases in two of the biggest MSAs (Metropolitan Statistical Areas) in the US, Dallas-Fort Worth (DFW) and Los Angeles at the block group (BG) level, by considering the US Environmental Protection Agency’s respiratory hazard quotient (RHQ) as the dependent variable. The researchers identify thirty candidate indicators of disease risk from previous studies and use them as independent variables in the model. The study applies a three-step modeling including Principal Component Analysis (PCA), Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) to reach the final model. The results of this study demonstrate strong spatial correlations in the variability in both MSAs which help explain the impact of the indicators such as socioeconomic characteristics, transit access to jobs, and automobile access on the risk of respiratory diseases. The populations living in areas with higher transit access to jobs in urbanized areas and greater automobile access in more rural areas appear more prone to respiratory diseases after controlling for demographic characteristics

    The Impacts of Increased Adverse Weather Events on Freight Movement

    Get PDF
    Freight transportation is a major economic backbone of the United States and is vital to sustaining the nation’s economic growth. Ports, as one of the primary components of freight transportation and important means of integrating into the global economic system, have experienced significant growth and increased capacity during the past two decades. The study addresses an important national freight mobility goal to enhance the resilience of the port transportation operations in the event of extreme weather events. This study develops an adaptable resilience assessment framework that evaluates the impact of a disruptive event on transportation operations. The framework identifies dynamic performance levels over an extended period of an event including five distinct phases of responses- staging, reduction, peak, restoration, and overloading. This study applies the framework to the port complex in Houston, Texas, during a major hurricane event, Harvey, and two holiday events in 2017. The framework evaluates proactive and reactive responses of port truck activities during the disruptions and provides a comprehensive assessment of resilience and adaptability in port truck operations. Evaluating response systems and resilience of port truck activities during severe weather events such as Hurricane Harvey represents the first step for designing plans that support a fast system recovery that minimizes the economic, social, and human impacts

    Impact of feature harmonization on radiogenomics analysis:Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images

    Get PDF
    Objective: To investigate the impact of harmonization on the performance of CT, PET, and fused PET/CT radiomic features toward the prediction of mutations status, for epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) genes in non-small cell lung cancer (NSCLC) patients. Methods: Radiomic features were extracted from tumors delineated on CT, PET, and wavelet fused PET/CT images obtained from 136 histologically proven NSCLC patients. Univariate and multivariate predictive models were developed using radiomic features before and after ComBat harmonization to predict EGFR and KRAS mutation statuses. Multivariate models were built using minimum redundancy maximum relevance feature selection and random forest classifier. We utilized 70/30% splitting patient datasets for training/testing, respectively, and repeated the procedure 10 times. The area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess model performance. The performance of the models (univariate and multivariate), before and after ComBat harmonization was compared using statistical analyses. Results: While the performance of most features in univariate modeling was significantly improved for EGFR prediction, most features did not show any significant difference in performance after harmonization in KRAS prediction. Average AUCs of all multivariate predictive models for both EGFR and KRAS were significantly improved (q-value &lt; 0.05) following ComBat harmonization. The mean ranges of AUCs increased following harmonization from 0.87-0.90 to 0.92-0.94 for EGFR, and from 0.85-0.90 to 0.91-0.94 for KRAS. The highest performance was achieved by harmonized F_R0.66_W0.75 model with AUC of 0.94, and 0.93 for EGFR and KRAS, respectively. Conclusion: Our results demonstrated that regarding univariate modelling, while ComBat harmonization had generally a better impact on features for EGFR compared to KRAS status prediction, its effect is feature-dependent. Hence, no systematic effect was observed. Regarding the multivariate models, ComBat harmonization significantly improved the performance of all radiomics models toward more successful prediction of EGFR and KRAS mutation statuses in lung cancer patients. Thus, by eliminating the batch effect in multi-centric radiomic feature sets, harmonization is a promising tool for developing robust and reproducible radiomics using vast and variant datasets.</p

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Network Analysis to Identify Critical Links for Relief Activities During Extreme Weather Events

    Get PDF
    As one of the principal lifeline systems, transportation networks are crucial for evacuation and delivering essential resources and services during the response and recovery phases of extreme weather events and must remain intact to enhance regional resiliency. The conventional evaluation measures that estimate the vulnerability or criticality of road network based on travel time or link volumes do not capture the community impacts due to disruptions. This study seeks to develop a framework to evaluate road network infrastructure criticality during extreme weather events by introducing measures that evaluate the vulnerability of roads users, rather than the physical aspects of link importance. The research develops an innovative approach that integrates three important concepts including hurricane evacuation behavior, community impacts, and road criticality to identify the critical links. Results show that the critical links for vulnerable populations during evacuation do not always align with conventional link-based measures. This highlights the importance of using a performance measure that takes the social vulnerability of road users into consideration when identifying the criticality of a road network and planning for fortification of links to avoid irreversible consequences for vulnerable population groups. Furthermore, decision-making that considers the risks to different communities may lead to a more effective distribution of resources and help support a timely and safe evacuation from disaster events by strengthening the preservation of critical infrastructure links

    Promoting Environmental Justice Populations’ Access to Opportunities with Suburban Boomtowns: An Interdisciplinary Mixed-Methods Approach to Addressing Infrastructure Needs

    Get PDF
    This study used a community-engaged interdisciplinary approach to assess the gaps between economic growth and transportation infrastructure development, and the impact of potential gaps on access to opportunities for environmental justice populations within North Central Texas, where population growth has increased over 100% since 2000. The interdisciplinary team, comprised of social work and civil engineering researchers, in partnership with the regional homeless coalition, measured residents’ perspectives of the economic growth in the area over the past decade, the extent to which transportation infrastructure has matched the economic growth, and the implications for access to affordable quality housing, employment, quality public education, as well as engagement in cultural and social activities. The team utilized a mixed-methods (focus groups and survey data), exploratory design to collect responses from a diverse sampling frame. The researchers compared results across environmental justice populations, and those who may have greater access to private transportation, e.g., personal vehicles. Social work led the community-engaged component of the social science data collection and civil engineering conducted statistical modeling related to mapping census data onto transportation access. The study results produced an infrastructure profile for the region, in which increased infrastructure from toll ways have improved job and population density, but with major challenges for usage of public transit. The results can inform public policies that support targeted transportation infrastructure development. Moreover, study results can inform the knowledge base regarding the relationship between economic growth and transportation infrastructure and how to improve their co-development, with a particular emphasis on the planning needs of environmental justice populations

    Non-Small Cell Lung Carcinoma Histopathological Subtype Phenotyping using High-Dimensional Multinomial Multiclass CT Radiomics Signature

    Get PDF
    Objective: The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC. Methods: This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. Results: The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm. Conclusions: Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine
    corecore